SMOOTHED QUANTILE REGRESSION FOR STATISTICAL DOWNSCALING
OF EXTREME EVENTS IN CLIMATE MODELING
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ABSTRACT. Statistical downscaling is commonly used in climate modeling to obtain high-resolution
spatial projections of future climate scenarios from the coarse-resolution outputs projected by
global climate models. Unfortunately, most of the statistical downscaling approaches using stan-
dard regression methods tend to emphasize projecting the conditional mean of the data while pay-
ing scant attention to the extreme values that are rare in occurrence yet critical for climate impact
assessment and adaptation studies. This paper presents a statistical downscaling framework that
focuses on the accurate projection of future extreme values by estimating directly the conditional
quantiles of the response variable. We also extend the proposed framework to a semi-supervised
learning setting and demonstrate its efficacy in terms of inferring the magnitude, frequency, and
timing of climate extreme events. The proposed approach outperformed baseline statistical down-
scaling approaches in 85% of the 37 stations evaluated, in terms of the accuracy of the magnitude
projected for extreme data points.

1. INTRODUCTION

An integral part of climate modeling is downscaling, which seeks to project future scenarios of
the local climate based on the coarse resolution outputs produced by global climate models (GCMs).
Two of the more common approaches to downscaling are dynamic downscaling and statistical down-
scaling. Dynamic downscaling uses a numerical meteorological model to simulate the physical dy-
namics of the local climate while utilizing the climate projections from GCMs as initial boundary
conditions. Though it captures the geographic details of a region unresolved by GCMs, the simula-
tion is computationally demanding while its spatial resolution remains too coarse for many climate
impact assessment studies. Statistical downscaling establishes the mathematical relationship be-
tween the coarse-scale GCM outputs and the fine-scale local climate variables based on observation
data. Unlike dynamic downscaling, it is flexible enough to incorporate any predictor variable and
is relatively inexpensive. Most of the statistical downscaling approaches employ regression methods
such as multiple linear regression, ridge regression, and neural networks to estimate the conditional
mean of the future climate conditions. These methods are ill-suited for predicting extreme values of
the climate variables.

An alternative approach is to use techniques such as quantile regression, which aims to minimize an
asymmetrically weighted sum of absolute errors, to estimate the particular quantile that corresponds
to extreme values [27]. Unfortunately, quantile regression tends to overestimate the response variable
resulting in a large number of data points being falsely predicted to be extreme. Figure 1 represent
the histogram of the distribution of observed temperature at a weather station in Canada. The
lines represent the distribution of the predicted values for temperature obtained using multiple
linear regression (MLR) and quantile regression. An observation is considered an extreme data
point if its response variable is in the top 5 percentile of observations. The shape of the tail of the
distribution that represents extreme data points (observed and projected) is shown in Figure 2. Tt is
clear from the figures that methods such as multiple linear regression (green line) that estimate the
conditional mean tend to underestimate the tail of observed probability distribution, while quantile
linear regression (red line) overestimates the tail part of the probability distribution. As elaborated
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in Section 5, it was found that for the 37 stations evaluated, at an average, quantile regression
predicted a datapoint to be an extreme point more than twice as frequently as the actual frequency
of observed extreme data points.
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FIGURE 1. Histogram of observed temperature.
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FIGURE 2. Tail of the histogram.

To address this overestimation, we propose a method known as smoothed quantile regression
(LSQR) that reduces the absolute error of extreme data points by introducing a smoothing term
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that brings the predicted response value of extreme points closer to the value corresponding to the
percentile of extreme data points. This smoothing term also provides a means to easily extend
the objective function to a semi-supervised learning setting (LSSQR). Semi-supervised learning, in
addition to using the training data, can also use the distribution characteristics of the predictor
variables of the test set to glean a better estimate of the distribution of data upon which the model
will be applied.

In summary, the main contributions of this paper are as follows:

o We demonstrate the limitation of MLR, ridge regression and quantile regression in predicting
values for extreme data points.

e We present a smoothed quantile regression framework for extreme values prediction.

e We also extend the framework to a semi-supervised setting.

e We demonstrate the efficacy of our learning framework on climate data (temperature) ob-
tained from the Canadian Climate Change Scenarios Network website [1]. Both the super-
vised and the semi-supervised proposed frameworks outperformed the baseline methods in
85% of the 37 stations evaluated, in terms of magnitude, frequency and the timing of the
extreme events.

The remainder of this paper is organized as follows. Section 2 covers some of the related work.
Section 3 introduces the reader to the notations and terminology used in the paper. Relevant
approaches, such as quantile regression are also introduced. Section 4 introduces the objective
function of the proposed supervised and semi-supervised model, as well as the analysis of the model.
This is followed by a detailed description of our algorithm and experimental results in Section 5.
Finally, we present our conclusions and suggestions for future work in Section 6.

2. RELATED WORK

Time series prediction has long been an active area of research with applications in finance [41],
climate modeling [20][13], network monitoring [11], transportation planning [25], etc. There are
several time series prediction techniques available, including least square regression [28], recurrent
neural networks [24], Hidden Markov Model Regression [23], and support vector regression [34].

Given the growth in the number of climate models in the earth science domain, extensive research
has been done to best utilize these models [32] as well as focus on downscaling surface climate
variables like temperature and precipitation time series from these global climate models (GCM)
[13, 14, 20, 40]. Identifying and modeling extreme events in climatology has recently gained a lot of
traction, especially with regard to temperature [8]. Unfortunately, the common regression techniques
mentioned earlier that may be used for downscaling, focus on predicting the conditional mean of
the response variable while extreme values are better identified by conditional quantiles as against
to condition means. Hence, unlike the common regression techniques mentioned earlier that focus
on predicting the conditional mean, the motivation behind the presented model is focusing on a
particular conditional quantile, similar to quantile regression [7], so as to accurately predict extreme
values during downscaling. Like many of the previous technique mentioned, [7] does not predict the
timing of the extreme values.

Variations of quantile regression such as non-parametric quantile regression and quantile regres-
sion forests have been used to infer the conditional distribution of the response variable which may
be used to build prediction intervals [35, 31]. Also, variants of quantile regression that estimate
the median are used due to its robustness to outliers when compared to traditional mean estimate
[42]. [22] presented a statistical downscaling approach to estimate censored conditional quantiles of
precipitation that uses QR. The conditional probability of the censored variable is estimated using
a generalized linear model (GLM) with a logit function to model the nature of the distribution of
precipitation and hence cannot be directly applied to model temperature. Mannshardt-Shamseldin
et. al. demonstrate another approach to downscaling extremes through the development of a family
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of regression relationships between the 100 year return value (extremes) of climate modeled precipi-
tation(NCEP and CCSM) and station-observed precipitation values [29]. Generalized extreme value
theory based approaches have also be applied to model extreme events like hydrologic and water
quality extremes, precipitation, etc [37, 6]. The Pareto distribution [48, 49], Gumbel [50, 51] and
Weibull [52] are the more common variants of General extreme value distribution used. But these
techniques are probabilistic based that emphasize trends pertaining to the distribution of future
extreme events and not the deterministic timing of the occurrence of the extreme event.

The drawback of building a model that primarily focuses on only a particular section of the
conditional distribution of the response variable is the limited amount of available data. Hence,
the motivation for incorporating unlabeled data during model building. There have been extensive
studies on the effect of incorporating unlabeled data to supervised classification problems, including
those based on generative models[19], transductive SVM [26], co-training [9], self-training [45] and
graph-based methods [5][46]. Some studies concluded that significant improvements in classification
performance can be achieved when unlabeled examples are used, while others have indicated other-
wise [9, 16, 18, 36, 43]. Blum and Mitchell [9] and Cozman et al. [16] suggested that unlabeled data
can help to reduce variance of the estimator as long as the modeling assumptions match the ground
truth data. Otherwise, unlabeled data may either improve or degrade the classification performance,
depending on the complexity of the classifier compared to the training set size [18]. Tian et al. [36]
showed the ill effects of using different distributions of labeled and unlabeled data on semi-supervised
learning.

3. PRELIMINARIES

Let D; = {(z;,y:)}7, be a labeled dataset of size n, where each x; € R? is a vector of predictor
variables and y; € R the corresponding response variable. Similarly, D, = {(xl,yl)}fjﬁl corre-
sponds to the unlabeled dataset. The objective of regression is to learn a target function f(z, ()
that best estimates the response variable y. [ is the parameter vector of the target function. n
represents the number of labeled training points and m represents the number of unlabeled testing
points.

3.1. Multiple linear regression (MLR) and ridge regression. One of most widely used forms
of regression is multiple linear regression. It solves a linear model of the form

y=a"f+e

where, €; ~ N(0,0?) is an i.i.d Gaussian error term with variance 02. B € R¢ is the parameter
vector. MLR minimizes the sum of squared residuals

(y—XB)"(y - XP)
which leads to a closed-form expression for the solution

B=X"X)"" X"y
A variant of MLR, called ridge regression or Tikhonov regularization is often used to mitigate over-
fitting. Ridge regression also provides a formulation to overcome the hurdle of a singular covariance
matrix X7 X that MLR might be faced with during optimization. Unlike the loss function of MLR
the loss function for ridge regression is

(y—XB)" (y— XB) + 2878,
and its corresponding closed-form expression for the solution is
B=(XTX+A)'XTy

where, the ridge coefficient A > 0 results in a non-singular matrix X7 X 4+ AI always being invertible.
The problem with both MLR, and ridge regression is that they try to model the conditional mean,

which is not best suited for predicting extremes.
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3.2. Quantile Linear Regression(QR). The 7" quantile of a random variable Y is given by:
Qv (m)=F (1) =inf{y: Fy(y) > 7}
where,
Fy(y) =P(Y <y)

is the distribution function of a real valued random variable Y and 7 € [0, 1].

Unlike MLR that estimates the conditional mean, quantile regression estimates the quantile (e.g.,
median) of Y.To estimate the 7t" conditional quantile Qyx(7), quantile regression minimizes an
asymmetrically weighted sum of absolute errors. To be more specific, the loss function for quantile
linear regression is:

N
> oy =l B)
=1

where,

TU u >0
priu) = {(T—l)u u<0

Unlike MLR and ridge regression that have a closed-formed solution, quantile regression is often
solved using optimization methods like linear programming. Linear programming is used to solve
the loss function by converting the problem to the following form.

min 717y 4 (1 - 7)1

u,v

st. y—alf=u—wv

where, u; > 0 and v; > 0. But as shown in Figures 1 and 2, quantile regression often overestimates
data points resulting in too many false positive extreme events predicted.

4. FRAMEWORK FOR SMOOTHED QUANTILE REGRESSION

Given that the primary objective of the model is to accurately regress extreme valued data points
and quantile regression has been shown to perform relatively better that its least square counterparts
that tend to underestimate the frequency and magnitude of extreme data points, the proposed
objective approach of the proposed frameworks is modeled around linear quantile regression. Section
4.1 describes smoothed quantile regression (LSQR) and its objective function. Section 4.2 proposes
a semi-supervised extension to LSQR which is then followed by mathematical properties of the
behavior of the objective function.

4.1. Smoothed quantile regression (LSQR). We propose a quantile-based linear regression
model that is based on the assumption of smoothness, i.e., data points whose predictor variables are
similar, should have a similar response. We use this notion of smoothness as an integral part of the
framework as experiments provided in Section 5 demonstrate this characteristic in the dataset used.
The smoothness assumption could be described as the constraint

> wi(fi = £i)? <c
i

where w;; is a measure of similarity between data point ¢ and 7, f the predicted value of the response
variable and c is a constant.

Also, since the framework doesn’t restrict the training set only to extreme data points, the
smoothing component of the objective function tends to implicitly cluster data points resulting in
better distinction of the response variables of an extreme valued data point and a non-extreme
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valued data point. Empirical results comparing supervised quantile regression to the proposed semi-
supervised model illustrate this point as shown in Section 5. The term

[lzi — 5]

w;j = exp(— ) i,j€(1,2,...,n]

g

is equivalent to the radial basis function and is used to capture the similarity between the predictor
variables of data point ¢ and data point j. o is a scale parameter used to control the distance above
which two data points are not considered as being highly coupled.

Assuming linear regression, f(x;, ) = z;08, the smoothing term can be reformulated as

Zwu (@i, 8) — f(2;.0)) = [TAf = 5783

where,
> =XxTAX
A=D-W

and D is a diagonal matrix such that D;; = Z; qwij and W= {wg; 7, _q.
Coupling smoothing with the objective function of linear qunatile regression, we end up with the
following optimization problem.

manp., (y; — 7' 8) + A\3T28

As can be clearly observed from the objective functions of LSQR, A — 0 results in an estimate
similar to quantile linear regression while, A — oo results in the estimate of the response variable
converging towards the target quantile of data. This is because a large A would penalize any non-
zero difference between f; and f; very harshly thereby minimizing the error by setting f; = o, Vi €
[1,2,...,n], thereby reducing the error from the second component of the equation to 0. This reduces
the loss function to the following

ZPT 1—0[ ﬁ:(a30705-"70)T
The formal proof of this is provided in the following theorem.

Theorem 1: f(xi, 3) = Ymr) a8 X — 00, Vi € [1,2,...,n].
Proof : Let y(;) be the ith smallest element among Yrlp—, and yi) < @ <= Yig1)-
When A — oo, the loss function can be rewritten in terms of a; as follows

% n

S (=1 —yuy) + >, Tlyw — i) + ZWW a;)

k=1 k=i+1 1,j=1

which is equivalent to minimizing

n
Y ) — Zy(k) (nT — i)y
k=1

or maximizing

Zy(k) + (n7 —d)a; =1
k=1

Therefore,

Li—lioi=yj —aj_1+ (nr—j) (o1 — )
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Hence, Vj : j < n1, 1j —1j—1 >= 0, since (y; — aj_1), (n7 — j) and (a;_1 — « ) are all > 0.
Similarly, Vj : j > nr,

lj—ljt1 = ajp1 — yjp1 + (07— ) — ajp1) >0

Hence, if 3i : i = n7, then a = y(,-). But if, i <n7r < (i+41), then a is in the interval [yq, y+1)] O
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F1cURrE 3. Influence of parameter A on the regression coefficients 5 in LSQR.

Figure 3 is a plot that tracks the values of § for different A values. The figure shows that the
regression parameter vector 3 will converge to (a,0,0,...,0)7 as X increases. f3 is the regression
parameter that corresponds to the column of 1’s in the design matrix.

Figures 4 and 5 plots the influence of A on the predicted values returned from LSSQR. i.e., as the
value of \ increases, LSSQR shrinks the prediction range to the quantile 7. Figure 5 is a zoomed-in
image, capturing the tail of Figure 4.

4.2. Linear semi-supervised quantile regression (LSSQR). The objective function of LSQR
can be easily extended to a semi-supervised learning setting since the smoothing factor (the second
term in the equation) is independent of y. Therefore, by extending the range of the indices i
and j of the smoothing term to span 1 to n 4+ m, the predictor variables of the unlabeled data
Xy = [Tuty ey zum]T can be harvested.

The objective function of the LSSQR is

n n+m
arg mgnZ pryi =l B)+ X ) wi(«] B — 2] )
i=1 ]
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5. EXPERIMENTAL RESULTS

In this section, the climate dataset that is used for statistical downscaling is described. This is
followed by the experimental setup, which address the inherent properties of the dataset, such as
its periodic nature. Once the dataset is introduced, we analyze the behavior of baseline models
developed using MLR, ridge regression and quantile regression and contrast them with LSQR and
LSSQR. The efficacy of the models in accurately measuring the magnitude, the relative frequency
and timing of forecasting a data point as an extreme event is measured.

5.1. Data. All the algorithms were run on climate data obtained at 37 weather stations in Canada,
from the Canadian Climate Change Scenarios Network website [1]. The response variable to be
regressed (downscaled) corresponds to daily temperature values measured at each weather station.
The predictor variables for each of the 37 stations correspond to 26 coarse-scale climate variables
derived from the NCEP re-analysis data set, which include measurements of airflow strength, sea-
level pressure, wind direction, vorticity, and humidity, as shown in Table 1. The predictor variables
used for training were obtained from the NCEP re-analysis data set that span a 40-year period
(1961 to 2001). The time series was truncated for each weather station to exclude days for which
temperature or any of the predictor values are missing.

TABLE 1. List of predictor variables for temperature prediction.

Predictor Variables

500 hPa airflow strength 850 hPa airflow strength
500 hPa zonal velocity 850 hPa zonal velocity

500 hPa meridional velocity 850 hPa meridional velocity
500 hPa vorticity 850 hPa vorticity

500 hPa geopotential height 850 hPa geopotential height
500 hPa wind direction 850 hPa wind direction

500 hPa divergence 850 hPa divergence
Relative humidity at 500 hPa Relative humidity at 850 hPa
Near surface relative humidity Surface specific humidity
Mean sea level pressure Surface zonal velocity
Surface airflow strength Surface meridional velocity
Surface vorticity Surface wind direction
Surface divergence Mean temp at 2 m

5.2. Experimental setup. As is well known, temperature, which is the response variable in our
experiments, has seasonal cycles. To efficiently capture the various cycles, de-seasonalization is
performed prior to running the experiments. As is common practice in the field of climatology, a
common approach to de-seasonalization is to split the data into 4 seasons (DJF, MAM, JJA, SON)
where 'DJF’ refers to the months of December-January-February in the temperature timeseries.
Similarly, '"MAM’ refers to March-April-May, and ’JJA’ refers to June-July-August and ’SON’,
September-October-November. In effect, for each station, we build 4 different models, corresponding
to the 4 seasons. The training size used spanned 6 years of data and the test size, 12 years. During
validation, the parameter A was selected using the score returned by RMSE for extreme data points.
A data point is considered extreme if its response variable is greater than .95 percentile (Threshold-
1) of the whole dataset corresponding to the station. QR was implemented using the interior point
algorithm as detailed in [2]. Broyden Fletcher Goldfarb Shanno (BFGS) method was used to solve
the LSQR and LSSQR optimization problem.



5.3. Evaluation criteria. The motivation behind the selection of the evaluation metrics was the
intent to evaluate the different algorithms in terms of accuracy of the prediction of extreme values,
the timing of the extreme events as well as the frequency with which a data point is predicted to be
an extreme data point. The following metrics are used to capture the above evaluation criteria for
the various models:

e Root Mean Square Error (RMSE), which measures the difference in magnitude between the
actual and predicted values of the response variable, i.e.:

RMSE = w RMSE was computed on those days that were observed to be
extreme data points.

e Precision and recall of extreme events are computed to measure the timing accuracy of the
prediction. F-measure, which is the harmonic mean between recall and precision values, will

be used as a score that summarizes the precision and recall results.
_ 2xRecallx Precisi
F-measure = 5 it Precision
e The frequency of predicting extreme data point for the various methods was measured by
computing the ratio of the number of data points that were predicted to be extreme to the

number of observed extreme data points.

To summarize, RMSE is used for measuring the accuracy of the predicted magnitude of the response
variable, whereas F-measure can be thought of as measuring the correctness of the timing of the
extreme events.

5.4. Baseline. We compared the performance of LSQR and LSSQR with baseline models created
using multiple linear regression (MLR), ridge regression (Ridge), and quantile regression (QR). All
the baselines were run for the same 37 stations and for all the 4 seasons. Also, a comparison of
the performance of the proposed supervised framework (LSQR) is made with its semi-supervised
counterpart (LSSQR), where LSSQR demonstrated an improved performance over LSQR for the 37
stations evaluated upon as shown in Table 2. Table 2 summarizes the tally of percentage of times
LSSQR outperformed LSQR over the 4 seasons for the given 37 stations. As seen in the table,
LSSQR showed an improved performance in terms of both RMSE and F-measure.

TABLE 2. The relative performance of LSSQR compared with LSQR with regard
to the extreme data points.

Win Loss Tie
RMSE 68.25% 31.75% 0%
F-measure 60.14% 37.16% 2.7%

5.5. Results. As mentioned earlier, experiments were run separately using each of the baseline
approaches and LSQR and LSSQR for the 4 seasons (DJF, MAM, JJA, SON) of the year for each
of the 37 stations’ data. The results over all the seasons and stations are summarized in Tables
3 and 4 while the individual results of each season in Figures 6 and 8. Table 3 summarizes the
relative performance of LSQR with respect to the baseline methods in terms of RMSE of extreme
data points and F-measure of identification of extreme data points. During testing, a data point
is considered extreme, if its response variable is greater than .95 percentile (Threshold-1) of the
whole dataset corresponding to the station. For the purpose of analysis, results of using the .95
percentile of the response variable in the training set (Threshold-2) to identify extreme data points
are also summarized. The fact that the results obtained by using the two different baselines is an
indicator that the training data did capture the distribution of the response variable reasonably
well. LSQR consistently outperformed the baselines both in terms of RMSE and F-measure. It
must also be noted that LSQR did outperform MLR and Ridge in terms of recall of extreme events
comprehensively across each of the 37 stations and seasons.
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TABLE 3. The percentage of stations LSQR outperformed the respective baselines,
with regard to the extreme data points.

MLR Ridge QR
RMSE Threshold-1 88.51% 87.84% 80.40%
Threshold-2 89.19% 87.84% 79.05%
Formeasure Threshold-1 59.45% 60.13% 72.97%
Threshold-2 56.08% 58.10% 79.05%

TABLE 4. The percentage of stations LSSQR outperformed the respective baselines,
with regard to the extreme data points.

MLR Ridge QR
RMSE Threshold-1 87.16% 85.14% 85.13%
Threshold-2 87.84% 86.49% 81.76%
Fomeastre Threshold-1 60.13% 58.78% 75.67%
Threshold-2 56.75% 59.45% 81.75%

Similarly, Table 4 summarizes the relative performance of LSSQR with respect to the baseline
methods in terms of RMSE of extreme data points and F-measure of identification of extreme data
points. Like LSQR, LSSQR consistently outperformed the baselines both in terms of RMSE and
F-measure. It must be noted that LSSQR outperform MLR and Ridge in terms of recall of extreme
events comprehensively across each of the 37 stations and seasons.

Figure 6 gives a breakdown of the performance of the LSSQR over each of the 4 seasons of the
37 stations using Threshold-1 for the purpose of marking a data point as extreme. The figure is
a bar chart of percentage of stations that LSSQR outperformed MLR, ridge regression and QR in
prediction accuracy for only extreme data points in the test set. RMSE was used to compute the
accuracy of each model in predicting extreme value data points, at the 37 stations. As seen in the
plot, LSSQR outperforms MLR, ridge regression and QR in each of the four seasons across the 37
stations.
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FIGURE 6. Ratio of stations LSSQR outperforming baseline in terms of RMSE of
extreme data points.

Figure 7 shows a graph that depicts the percentage of stations LSSQR outperformed MLR, ridge
regression and QR in terms of identifying extreme data points over 37 stations. Again, LSSQR
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comprehensively outperforms MLR and ridge regression over all the 37 stations and 4 seasons. But
as expected, QR outperforms LSSQR in terms of recall performance for each of the 4 seasons due
to the overestimating nature of QR, which consequently resulted in poor precision and which is
reflected in its F-measure score. At an average, quantile regression, predicted a datapoint to be
an extreme point more than twice as frequently as the actual frequency of observed extreme data
points. In fact, QR lost out to LSSQR in 91% of 37 stations across 4 seasons in terms of precision
of identifying extreme data points.
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FiGURE 7. Ratio of stations LSSQR outperforming baseline in terms of recall of
extreme data points.

Figure 8 shows a graph that depicts the percentage of stations where LSSQR outperformed MLR,
ridge regression and QR in prediction accuracy based on F-measure of the identifying extreme data
points over 37 stations. Again, LSSQR outperforms MLR, ridge regression and QR for all the 4
seasons.
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The performance improvement obtained by LSSQR in terms of predicting the extreme values can
be easily visualized in Figure 9. Figure 9 is a plot comparing the predicted response variable of
the various methods. The plot is restricted to only extreme data points for a station. As expected,
the predicted value of the response variable using multiple linear regression is often underestimat-
ing the observed temperature, while quantile regression regularly overestimates the prediction of
temperature and LSSQR lies in between MLR and QR and closer to the observed temperature.
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FIGURE 9. Prediction performance of extreme data points using MLR, Ridge, QR, LSSQR.

6. CONCLUSIONS

This paper presents a semi-supervised framework (LSSQR) for recalling and accurately predicting
values for extreme data points. The proposed approach was applied to real world climate data
spanning 37 stations and was compared with MLR, ridge regression and quantile regression in terms
of the effectiveness the model demonstrated in identifying and predicting extreme temperatures for
the given stations. For future work, we will explore a non-linear variant of the smoothed quantile
regression framework. We will also explore a semi-supervised variant of the non-linear smoothed
quantile regression model.
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